Severity of hemorrhage and rate of bleeding are fundamental factors in the outcomes of trauma. Intra-
venous administration of fluid is the basic treatment to maintain blood pressure until bleeding is con-
trolled. The main guideline, used almost worldwide, Advanced Trauma Life Support, established by the
American College of Surgeons in 1976, calls for aggressive administration of intravenous fluids, primarily
crystalloid solutions. Several other guidelines, such as Prehospital Trauma Life Support, Trauma Evalua-
tion and Management, and Advanced Trauma Operative Management, are applied according to a patient’s
current condition. However, the ideal strategy remains unclear. With permissive hypotension, also known
as hypotensive resuscitation, fluid administration is less aggressive. The available models of permissive
hypotension are based on hypotheses in hypovolemic physiology and restricted clinical trials in animals.
Before these models can be used in patients, randomized, controlled clinical trials are necessary. (Critical
Care Nurse. 2013;33[6]:18-25)
Managing hemorrhage from the first minute after an injury is crucial in preventing death. Despite the development of trauma resuscitation strategies and the implementation of algorithm guidelines such as Advanced Trauma Life Support and Prehospital Trauma Life Support, health care professionals still struggle against the physiological consequences of trauma.

Hemorrhage Due to Trauma

Acute blood loss leads to multiple organ dysfunction syndrome through extended tissue hypoperfusion and lactic acidosis due to diminished oxygenation. Therefore, arrest of bleeding and restoration of circulating blood volume with sufficient oxygen transport are 2 of the main goals in management strategies.

Hemorrhage is considered responsible for approximately 50% of trauma deaths within the first few hours, and 34% of the deaths occur in the hospital. Surgical control of hemorrhage remains the best method of resuscitation in hemorrhaging, hypotensive trauma patients. Application of a finger, pack, clamp, tourniquet, or ligation can easily be achieved if the hemorrhage is external and therefore compressible. Such action, which can be taken in a nonhospital environment, drastically limits blood loss and consequently improves survival rate. In patients with noncompressible hemorrhage (eg, injury of the subclavian artery, rupture of the spleen), laparotomy, thoracotomy, and groin or neck exploration are the methods of choice for surgical control of hemorrhage. These procedures are almost exclusively performed in an operating room.

The period before definitive surgical control of hemorrhage can be divided into 3 phases on the basis of the time first aid was provided (Table 1). In Australia, 66%

<table>
<thead>
<tr>
<th>Phase</th>
<th>Where/Current trends</th>
<th>Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>First: before the arrival of trained medical assistance</td>
<td>At the scene of injury</td>
<td>Bleeding control with compression when possible</td>
</tr>
<tr>
<td>Second: management by prehospital personnel</td>
<td>At the scene of injury and in transit to the hospital (depending on location)</td>
<td>Duration of the evacuation chain</td>
</tr>
<tr>
<td></td>
<td>PHTLS guidelines suggest the scoop and run policy (no resuscitation or hypotensive resuscitation)</td>
<td>Maintenance of adequate mentation and/or a palpable radial pulse (systolic blood pressure of 80 mm Hg)</td>
</tr>
<tr>
<td></td>
<td>Advanced Care Practice performed by medical staff (central venous catheterization, intubation, etc)</td>
<td></td>
</tr>
<tr>
<td>Third: management before transfer to the operating room</td>
<td>In the emergency department</td>
<td>For patients who are estimated to have lost ≥30% of the normal circulating volume</td>
</tr>
<tr>
<td></td>
<td>ATLS algorithm mandates the rapid infusion of up to 2 L of isotonic fluid or blood in an adult</td>
<td>Restoration of lost intravascular volume followed by packed red blood cells and plasma as needed to maintain a normal systolic blood pressure, adequate tissue perfusion, and vital organ function</td>
</tr>
</tbody>
</table>

Abbreviations: ATLS, Advanced Trauma Life Support; PHTLS, Prehospital Trauma Life Support.

Table 1 Phases before the definitive surgical control of hemorrhage

Authors

Stavros Gourgiotis is a surgeon consultant, 2nd Department of Surgery, 401 General Military Hospital, Athens, Greece.

George Gemenetzis is a resident (PGY 2), 2nd Department of Surgery, 401 General Military Hospital.

Hemant M. Kocher is a surgeon consultant, Barts and the London HPB Centre, Royal London Hospital, London, United Kingdom.

Stavros Aloizos is an anesthesiologist and director of the intensive care unit, 401 General Military Hospital.

Nikolaos S. Salemis is a surgeon and director of the breast cancer unit, 401 General Military Hospital.

Stylianos Grammenos is a resident (PGY 4), 2nd Department of Surgery, 401 General Military Hospital.

Corresponding author: George Gemenetzis, MD, Resident (PGY 2), 4th Dept of Surgery, Attikon University Hospital, Rimini 1 12462, Chaidari, Attiki, Greece (e-mail: georgegemen@gmail.com).

To purchase electronic or print reprints, contact the American Association of Critical-Care Nurses, 101 Columbia, Aliso Viejo, CA 92656. Phone, (800) 899-1712 or (949) 362-2050 (ext 532); fax, (949) 362-2049; e-mail, reprint@aacn.org.
of trauma patients died during the first phase of first aid (74% of the deaths were due to penetrating injuries).7

Involvement of trained medical personnel during the second phase and implementation of Prehospital Trauma Life Support guidelines require an immediate transport from the scene of injury, often without resuscitation, especially in massive casualties. This approach is known as scoop and run and refers to immediate retrieval and transport of a trauma victim to a hospital because of extreme severe injury and insufficient time for medical stabilization.12

A patient’s response to the rapid infusion of isotonic fluid or blood, as dictated by the Advanced Trauma Life Support guidelines, is a strong indicator of his or her hemodynamic equilibrium. However, this standard approach may contribute to continuous bleeding and consequently to increased mortality. Increasing the hydrostatic pressure on blood clots with aggressive administration of intravenous fluid adversely affects the endogenous coagulopathy that has already occurred through excessive fibrinolysis and anticoagulation, particularly in patients with penetrating trauma.13

Moreover, in patients whose hemorrhage cannot be controlled, infusion of large volumes of fluid results in increased blood loss.14 The dilemma that emerges concerns an alternative approach to treatment of hypotensive trauma patients with internal (abdominal and thoracic) hemorrhage: can permissive hypotension be helpful, and, if so, when?

Table 2: Studies of permissive hypotension in animals

<table>
<thead>
<tr>
<th>Authors, year</th>
<th>Immediate normotension resuscitation (mean arterial pressure >80 mm Hg)</th>
<th>Permissive hypotension resuscitation (mean arterial pressure <80 mm Hg)</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of animals</td>
<td>No. (%) that died</td>
<td>No. of animals</td>
</tr>
<tr>
<td>Bickell et al.15 1991</td>
<td>8</td>
<td>5 (62)</td>
<td>8</td>
</tr>
<tr>
<td>Capone et al.16 1995</td>
<td>10</td>
<td>10 (100)</td>
<td>10</td>
</tr>
<tr>
<td>Rafie et al.17 2004</td>
<td>7</td>
<td>0 (0)</td>
<td>6</td>
</tr>
<tr>
<td>Li et al.18 2011</td>
<td>10</td>
<td>8 (80)</td>
<td>50</td>
</tr>
<tr>
<td>Schmidt et al.19 2012</td>
<td>6</td>
<td>6 (100)</td>
<td>6</td>
</tr>
</tbody>
</table>

Experimental Assessment of Permissive Hypotension in Animals

In the early 1990s, experimental models of permissive hypotension were developed and evaluated in rats and swine (Table 2). Some results15,20 suggested that aggressive fluid administration might increase bleeding and decrease survival rates in cases of uncontrollable hemorrhage (hemostasis not possible through compression), whereas other findings16 indicated that moderate, permissive hypotension might prolong survival. Bickell et al.15 developed a model to study resuscitation in uncontrolled hemorrhage. A 5-mm aortotomy was inflicted in 16 anesthetized pigs, and the animals were separated into 2 groups. In the treatment group, resuscitation was started 6 minutes after aortotomy with aggressive infusion of crystalloid fluid containing only electrolytes (4 mL/kg per minute physiological saline). In the control group, none of the animals were infused with fluid. The results were impressive. After a 30-minute sample time, 5 animals in the treatment group had died, and all 8 animals in the control group had survived. The volumes of blood lost were much greater ($P < .05$) in the treatment group (mean, 1340 mL; SD, 230 mL) than in the control group (mean, 783 mL; SD, 85 mL). In the treatment group, increases in mean arterial pressure (MAP) and blood flow velocity due to volume replacement disrupted the hydrostatic forces that contributed to the formation of platelet thrombi formed in the 6 minutes before resuscitation efforts began.

More recent studies18,19 in animals focused on permissive hypotension in uncontrolled bleeding. Attempts were made to determine the effects of early or delayed hypotensive blood resuscitation.19 The results suggested...
that attempts to restore normotension (a MAP of 90 mm Hg) by rapid volume expansion resulted in significant increase in hemorrhage volume and mortality, and the goal of normotension was often unachievable.19

Moderately underresuscitated animals (MAPs 40-80 mm Hg) tended to experience less intraperitoneal hemorrhage than did animals with higher MAPs.19 These findings suggest that MAP alone does not lead to a poor outcome. The peak of maximum pulse pressures occurred much later in the underresuscitated animals than in the other animals, giving the temporary platelet plug of the vascular injury time to promote hemostasis by transforming into a fibrinous, rigid hemostatic plug.18

Aggressive fluid resuscitation may reverse vasoconstriction by replacing volume, displace early formed thrombus by increasing blood flow, and therefore magnify the establishment of coagulopathy due to hypovolemic shock.20 A systematic meta-analysis of preclinical data (52 animal trials)21 indicated an increased adjusted relative risk of death, from 0.69 to 1.80, when aggressive resuscitation was used in animals with less severe hemorrhage (ie, tail resection). In other trials,16,17 attempts to increase MAP to 80 mm Hg with fluid resuscitation in animals with established hypovolemic shock were associated with increased oxygen supply to the tissues, metabolic acidosis, and a poor outcome.

All the experimental models just described had common features: the studies were done in a large premedicated and anesthetized mammal that was invasively monitored and surgically manipulated. Before implementation of the experimental protocol, hemodynamic stabilization and splenectomy were performed to minimize the effects of splanchnic sequestration and autotransfusion. The combination of these conditions and excessive resuscitation does not fully coincide with everyday medical practice, and the findings cannot easily be extrapolated to humans. Therefore, the results cannot be interpreted appropriately because of significant bias.22 However, the encouraging results of the trials in animals prompted prospective, controlled studies of patients with hemorrhagic shock due to trauma.

Studies of Permissive Hypotension in Humans

Several studies of permissive hypotension in humans have been reported (Table 3). Bickell et al23 compared the effects of immediate (before surgical intervention) and delayed (after entering the hospital) fluid resuscitation with isotonic crystalloid in 598 hypotensive patients (systolic blood pressure <90 mm Hg) with penetrating torso injuries from gunshot or stab wounds. Mortality was lower \((P = .04)\) in the 289 patients who received delayed resuscitation (38.9%; 86 fatalities) than in the 309 patients who received immediate resuscitation (37.5%; 116 fatalities). In addition, 23% of patients in the delayed resuscitation group had one or more serious complications, including adult respiratory syndrome, acute renal failure, wound infection, and pneumonia, compared with 30% of patients in the immediate resuscitation group \((P = .08)\). However, this trial was not formally randomized because randomization was not considered logistically feasible.

<table>
<thead>
<tr>
<th>Authors, year</th>
<th>Immediate normotension resuscitation (mean arterial pressure = 100 mm Hg)</th>
<th>Permissive hypotension resuscitation (mean arterial pressure <80 mm Hg)</th>
<th>Sample size</th>
<th>Method</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bickell et al,23 1994</td>
<td>309</td>
<td>116 (37.5)</td>
<td>289</td>
<td>86 (29.8)</td>
<td>.04</td>
</tr>
<tr>
<td>Dunham et al,24 1991</td>
<td>16</td>
<td>5 (31)</td>
<td>20</td>
<td>5 (25)</td>
<td>.36</td>
</tr>
<tr>
<td>Dutton et al,25 2002</td>
<td>55</td>
<td>4 (7.3)</td>
<td>55</td>
<td>4 (7.3)</td>
<td>.31</td>
</tr>
</tbody>
</table>
Dunham et al reported mortality and coagulation time for a total of 36 hypotensive trauma patients (systolic blood pressure <90 mm Hg). Mortality was 31% (5 of 16 patients) in the group who received a larger volume of fluids (total amount 5069 mL) administered conventionally and 25% (5 of 20 patients) in the group who received a smaller volume of fluids (total amount 3001 mL). The difference between the 2 groups was not significant ($P = .36$).

Dutton et al compared 2 fluid resuscitation protocols in 110 patients with blunt and penetrating trauma. The goal was to maintain a systolic blood pressure of 70 mm Hg (low) or one greater than 100 mm Hg (conventional). The mortality rate (7.3%) was the same for both groups of patients. However, comparison of Injury Severity Scores indicated that patients in the low group (scores, 16-24) were more severely injured ($P = .02$) than were patients in the conventional group (scores, 9-15). Thus, permissive hypotensive resuscitation may benefit restoration of blood circulation and cause a modest increase in blood pressure (reducing the risk of additional blood loss due to continued bleeding or rebleeding) with minimal fluid requirements.

The Triad of Death and Damage Control Surgery

Currently, damage control surgery is a major area of interest in trauma management. Principles of damage control apply not only to the abdomen but also to many other regions of the body.

Damage control surgery is defined as a series of operations performed to definitively repair injuries of the abdomen or other parts of the torso in accordance with a patient’s ability to tolerate the physiological consequences of injury and repair. The main tenet of damage control surgery is that patients die from the so-called triad of death.

The triad consists of 3 main conditions—hypothermia, acidosis, and coagulopathy—that occur in a vicious cycle that often cannot be interrupted. Diminished blood volume and cardiac output lead to immediate vasoconstriction and tachycardia as a compensatory mechanism. Further blood loss results in hypothermia and peripheral tissue hypoperfusion due to prolonged vasoconstriction. Hypothermia gradually derails the hemostatic system by increasing the tendency for fibrinolysis. This increase marks the limit of a patient’s ability to cope with the physiological consequences of injury. The already established acidosis, coagulopathy, and hypothermia may be aggravated by resuscitation with crystalloid fluids. The volume of crystalloid administered most likely has an adverse effect on the activation of hemostatic factors at the blood vessel endothelium, leading to clotting disturbances and then exsanguination.

Therefore, recent trends include the use of blood products in the emergency department, a practice already supported by the Advanced Trauma Life Support algorithm: warm whole blood, packed red blood cells and thawed fresh frozen plasma in a ratio of 1:1, platelets, thrombocytopenia cryoprecipitate, and recombinant activated factor VII. The definitive role of factor VII, however, still needs to be determined. Only a few prospective randomized trials with recombinant factor VII have been done, and the results showed no significant differences in mortality rates between patients given the factor and patients given a placebo.

Establishment of the triad of death leads to irreversible physiological conditions. Damage control surgery should be implemented to disrupt this cycle as soon as possible to contain hemorrhaging, the basic cause of fatality. Stopping the triad of death provides a chance to restore the patient’s response to blood loss. Use of damage control surgery has led to improved survival and decreases in hemorrhage until the physiological derangement is limited and the patient can undergo an operation for definitive repair.

Discussion

The primary goal in management of hemorrhagic hypovolemia is control of blood loss. Hypotension due to acute and severe blood loss represents a state of shock and can lead to organ failure and death. Supporters of early aggressive resuscitation in acute bleeding thought that the need to improve perfusion of vital organs was more important than any risk of aggravating hemorrhage. Patients in severe hemorrhagic shock benefit from the use of intravenous crystalloids and colloids along with blood products. Blood products are not widely available before arrival in the emergency department and should, when possible, be the initial fluid of resuscitation in the hospital environment, especially if a patient’s estimated...
blood loss is 30% or more of normal circulating volume (stage 2 hypovolemia).41

Clearly, however, fluid resuscitation that results in a MAP greater than 80 to 90 mm Hg before surgical hemostasis is associated with increased bleeding.26 Several pathophysiologial factors are responsible. Increased intravascular volume affects active bleeding by hindering clotting. Administration of intravenous fluids can also lead to hemodilution, because the fluids do not contain clotting factors or erythrocytes, and to hypothermia, if unwarmed, because of the increased infusion rate (>4 mL/kg per minute).32

Current evidence42 suggests that moderate hypotension for less than 30 minutes can be tolerated by trauma patients without progression to end-organ failure. These patients respond better to a possible delay in surgical management of the hemorrhage in a definitive care facility than do patients with greater hypotension. Hypotensive resuscitation seems, also, to reduce bleeding via administration of lower volumes of fluid but does not markedly affect the metabolic acidosis that occurs due to hypoxic tissue conditions. Therefore, hypotensive resuscitation is a reasonable approach for trauma patients who have lost up to 30% of total blood volume (stage 2 hypovolemia).11 Use of permissive hypotension avoids the adverse effects of early aggressive resuscitation mentioned in the Advanced Trauma Life Support guidelines yet maintains a level of tissue perfusion that, although lower than normal, seems to be adequate.

However, as promising as permissive hypotension can be, it can be fatal in some patients.43 Of note, permissive hypotension is contraindicated in patients with traumatic brain injuries, because adequate perfusion pressure is crucial to ensure tissue oxygenation of the central nervous system,44 and in patients who are near circulatory collapse (ie, stages 3 and 4 of hypovolemic shock). Preexisting conditions such as hypertension, angina pectoris, coronary disease, and carotid stenosis may also lead to severe cardiovascular dysfunction when trauma patients are hypotensive. These conditions are common mainly in the elderly (>65 years old), but also occur in other age groups because of occult disease.

Undoubtedly, the best way to manage life-threatening hemorrhage is surgical control in the operating room.8 Any resuscitation strategy is only a temporary measure, a tool in the management of patients with hypovolemia. Therefore, whatever strategy is followed, it should not lead to additional delay in the transfer of a patient to the operating room if indicated. Attempts to place a catheter and administer intravenous fluids may delay the delivery of definitive hospital care.44 Sampalis et al46 reported that mortality was significantly higher (P<.001) after on-site (at the trauma scene) resuscitation (23%) than after in-hospital resuscitation (6%). Because of the immediacy needed in evacuation of patients,38 the scoop and run approach and the strategy suggested by the Prehospital Trauma Life Support guidelines are considered the most credible approach to on-site trauma.

Conclusion

A major challenge in research on hypovolemic resuscitation is the development of an appropriate strategy via an algorithm that considers all available physiological parameters. The Advanced Trauma Life Support algorithm for rapid administration of intravenous crystalloid and/or blood in bleeding patients11 provides an established and effective strategy when combined with an appropriate monitoring of a patient’s physiological responses to changes in blood volume. Permissive hypotensive resuscitation may benefit restoration of blood circulation and cause a modest increase in blood pressure with minimal fluid requirements.

Life-threatening hemorrhage, however, can also be managed by maintaining a state of permissive hypotension (systolic blood pressure <80 mm Hg) while the patient is transferred from the accident site to the operating room. Evidence indicates that the hypotensive state may be more beneficial to patients, by limiting coagulopathy and hypothermia. The data supporting this strategy, however, are mainly extrapolated from trials in laboratory animals. The urgency in trauma management, the variability of conditions and environments, and the differences in the experience and mobilization of medical personnel increase the difficulty of defining solid end points in favor of permissive hypotension.

Prospective clinical trials are needed. These trials must provide conclusive information that will challenge the
Now that you’ve read the article, create or contribute to an online discussion you want to comment on. In the full-text or PDF view of the article, click “Responses” in the middle column and then “Submit a response.”

To learn more about caring for trauma patients, read “Dermographic Differences in Systemic Inflammatory Response Syndrome Score After Trauma” by NeSmith et al in the American Journal of Critical Care, January 2012;21:35-41. Available at www.aajconline.org.

References
10. American College of Surgeons, Committee on Trauma. PHTLS: Prehospital Trauma Life Support. 7th ed. St Louis, MO: Mosby/JEMS; December 2010.
11. American College of Surgeons, Committee on Trauma. ATLS: Advanced Trauma Life Support Student Course Manual. 9th ed. Chicago, IL: American College of Surgeons; September 2012.