CERTIFICATION REVIEW: Cardiovascular Part 2

Barbara Pope, RN, MSN, CCRN, PCCN, CCNS
popeb@einstein.edu
Critical Care Clinical Educator
Albert Einstein Healthcare Network
Philadelphia, PA

Content Description

This session reviews the pathophysiology, presentation, diagnosis, and collaborative care of chronic and acute decompensated heart failure. It also discusses cardiomyopathy, valvular diseases and cardiac inflammatory disease as they relate to heart failure. Finally, it will look at dysrhythmias and the care of the patient with a temporary pacemaker. These topics will be discussed with an emphasis on possible questions that may be asked on these subjects in the CCRN, PCCN, and CMC examinations. There will be time allotted for sample questions.

Learning Objectives
At the end of this session, the participant will be able to:

1. Describe the clinical presentation, diagnosis and collaborative management of the patient with chronic and acute decompensated heart failure.

2. Describe the presentations and collaborative care of cardiomyopathy, valvular disease, and cardiac inflammatory disease.

3. Discuss the identification of and interventions for patients experiencing cardiac dysrhythmia and those requiring a temporary pacemaker

REFERENCES

NOTE: Please refer to outline for references pertaining to this session.
Certification Review: Cardiovascular Part 2

Approximately 20% of the CCRN exam, 36% of the PCCN exam and 43% of the CMC exam will focus on cardiovascular disease.

<table>
<thead>
<tr>
<th>CCRN, PCCN and CMC</th>
<th>CCRN, PCCN and CMC</th>
<th>CCRN and CMC only</th>
<th>PCCN and CMC only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Coronary Syndrome</td>
<td>Interventional cardiology</td>
<td>Cardiac surgery</td>
<td>Acute peripheral vascular insufficiency/ peripheral vascular surgery</td>
</tr>
<tr>
<td>☑ Heart Failure</td>
<td>☑ Acute pulmonary edema</td>
<td>Hypertensive crisis</td>
<td>Ruptured or dissecting aneurysm</td>
</tr>
<tr>
<td>☑ Dysrhythmias</td>
<td>☑ Conduction defects</td>
<td>Cardiac trauma</td>
<td>Acute inflammatory disease</td>
</tr>
<tr>
<td>☑ Cardiomyopathies</td>
<td>☑ Structural heart defects</td>
<td>Cardiogenic shock</td>
<td>Cardiac tamponade</td>
</tr>
<tr>
<td>Hypovolemic shock (in multisystem on PCCN; discussed here)</td>
<td></td>
<td>Hypovolemic shock (in multisystem on PCCN; discussed here)</td>
<td>Pulmonary hypertension (in pulmonary on PCCN. Discussed in pulmonary session)</td>
</tr>
</tbody>
</table>

Note for PCCN candidates: This presentation includes discussions of pulmonary artery catheter measurements, administration of vasoactive medications, and advanced mechanical devices such as intra-aortic balloon pump and ventricular assist devices. These topics will not be tested in the PCCN exam.

I. Heart failure
 A. Definitions
 1. ACC/AHA Practice Guidelines
 A complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood.
 2. The inability of the heart to maintain a continuous flow of blood commensurate with the metabolic needs of tissues and organs, or to do so only by means of increased filling pressures.
 B. Determination of severity of heart failure

 New York Heart Association Functional Classification System
<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No limitations</td>
</tr>
<tr>
<td>Minimal</td>
<td>Normal daily activity does not initiate symptoms of fatigue, dyspnea, palpitations or angina</td>
</tr>
</tbody>
</table>
New York Heart Association Functional Classification System

Class II Slightly limited physical activity
Mild Comfortable at rest
 Normal daily activities initiate onset of symptoms
Class III Markedly limited physical activity
Moderate Comfortable at rest
 Less than normal activity initiates symptoms
Class IV Any type of activity initiates symptoms
Severe Symptoms may occur at rest

C. Cardinal symptoms of heart failure
 Dyspnea
 Fatigue
 Fluid retention

D. Causes
 Most common causes
 CAD
 Hypertension
 Dilated cardiomyopathy
 Other causes
 Valvular disease
 Diabetes mellitus
 Hyperlipidemia
 Smoking
 PVD
 RHD
 Mediastinal irradiation
 Sleep apnea
 Illicit drug use

E. Physiology of HF
 Effects of HF on cardiac output
 Heart rate
 Preload
 Afterload
 Contractility
 Components of stroke volume
 Neurohormonal mechanisms in heart failure
 Sympathetic nervous stimulation
 Renin-angiotensin-aldosterone system activity
 Meant to be compensatory
 Results in:
 Structural changes
 Chamber dilation or hypertrophy (cardiac remodeling)
 Damaged myocytes
 More spherical shape
Decreased functioning

F. Diagnostic tests

Diagnosis made mainly through history and physical findings
Chest X-Ray: Enlarged cardiac silhouette; Kerley B lines, pleural effusion
ECG: Q waves, IVCD, atrial fibrillation, ventricular ectopy, atrial enlargement, ventricular hypertrophy
Both nonspecific.
Two-dimensional echocardiogram with Doppler flow studies: abnormal wall motion, chamber dilation, hypertrophy, valve dysfunction, decreased ejection fraction. Most useful test

G. Labs

CBC, electrolytes, including Ca++, Mg+ and Phosphorus, BUN, creatinine, liver enzymes, thyroid testing
B-type natriuretic peptide (BNP) levels
Elevated in proportion to severity of HF - ≥100 pg/ml
Lower levels rule out HF as a cause of dyspnea - ≤ 80 pg/ml
Levels correlate with NYHA classifications of heart failure

H. Treatment

Drug therapy

Diuretics

Loop – Furosmide (Lasix), bumetanide (Bumex)
Monitor K+, Mg+, BUN, Cr, hypotension, I&O, daily weights
Administer IV push slowly – 20 mg/min to avoid ototoxicity
Potassium-sparing – spironolactone (Aldactone)
Use in combination with loop diuretics; watch for hyperkalemia
Contraindicated in patients with SPB < 90 mmHg, cardiogenic shock
Thiazide – Metolazone (Zarolyolyn)
Enhance diuresis when used with furosemide or bumetanide
ACE inhibitors - captopril (Capoten), enalapril (Vasotec)
Inhibits RAA system; monitor K+, BUN, creatinine, hypotension, dry cough, angioedema
ARBs - losartan (Cozaar), valsartan (Diovan)
Not as effective as ACEI, less risk of cough, angioedema. Monitor as with ACEI
Beta-blockers - bisoprolol (Zebeta), carvedilol (Coreg), and metoprolol (Lopressor) only βB recommended in AHA/ACC guidelines
Titrate slowly; contraindicated in hypotension, bradycardia, 2nd & 3rd degree AVB, asthma

Digitalis glycosides
Positive inotrope, increases cardiac contractility; may also down-regulate sympathetic activity. Indicated for patients who remain symptomatic or who are being titrated on 𝛽B. Monitor dysrhythmia, esp. heart block, N/V, visual disturbances, dig toxicity.

I. **Management of Patient with HF**
Control of hypertension, diabetes, hyperlipidemia
Smoking cessation; restrict/eliminate alcohol use
Healthy diet/low sodium diet, 2-4 gm
Fluid restriction, 64 oz/day; daily weight
 Report weight gain of 3-4 lb over several days.
Flu and pneumonia vaccination
Supervised exercise

J. **Acute decompensated heart failure (ADHF)**
1. **Clinical presentation**
 Left heart failure
 Right heart failure

 Dyspnea
 Tachycardia
 S\textsubscript{3}
 Crackles
 Frothy sputum
 Oliguria
 Decreased PaO\textsubscript{2}, SaO\textsubscript{2}
 PAOP > 20 mmHg
 CO < 4L/Min
 SVR > 1200 dynes/cm/sec-5

 Diagnostics
 CXR, ECG, BNP

2. **Drug therapy in ADHF**
Diuretics, ACEI/ARB as with chronic HF
Decrease dose of beta-blocker
 May not be able to discontinue
Vasodilators: Nitroglycerin, nitroprusside (Nipride)
 Decrease preload and afterload
 May increase RA activity
Use with ACEI or ARB to prevent
Decrease myocardial oxygen consumption
Do not cause dysrhythmias.
Nitroglycerin
Venous dilator and preload reducer. Decreases coronary vascular resistance. Afterload reducer at doses >30 mcg/min;. May cause headache and abdominal pain
Nitroprusside
Venous and arterial dilator at all doses. Effective in acute mitral or aortic regurgitation. May cause coronary steal – vasodilation in nonischemic areas that can shunt blood from areas of ischemia. Should have arterial line and/or PA catheter. Monitor for cyanide toxicity.
Morphine
If given, should be after nitroglycerin treatment. No evidence of efficacy; second-line treatment
Neurohormonal: nesiritide (Natrecor)
Reduces preload and afterload
Improves CO/CI
Diuretic and natriuretic
Decreased levels of aldosterone and norepinephrine
Fast onset of action
Decreases PAOP within 15 minutes
No atrial or ventricular arrhythmias as with positive inotropes
Does not require ICU admission, arterial line, PA catheter.
Does not appear to increase mortality.
Major side effect is hypotension.
Turn off or decrease rate of infusion. Reposition patient on side, administer fluids. Restart nesiritide at rate 30% lower when BP stable
Recent concern that it may cause decreased renal function
Inotropes: Dobutamine (Dobutrex), milrinone (Primacor)
Increase CO by increasing cardiac contractility
Increases heart rate
Increases myocardial oxygen demand
Associated with increased mortality
Contraindicated in hypertrophic cardiomyopathy, aortic stenosis
Should only be used in shock or poor perfusion
Milrinone does not compete with beta blockade

3. Oxygen
CPAP or BiPAP
Noninvasive increase in intrathoracic positive pressure decreases preload
Mechanical ventilation if NIPPV is not effective and in cardiogenic shock

4. Other treatment modalities

ICD
Sudden death often cause of mortality in HF. Implantation of ICD may decrease mortality. Increase in hospital admission for HF, possibly due to pacemaker function of IVCD causing ventricular dyssynchrony. Used in conjunction with ventricular antidysrhythmics such as Amiodarone

Cardiac resynchronization
IVCD results in dyssynchronous ventricular contractions. Worsens systolic HF, interferes with diastolic function. May worsen MR.
Biventricular pacemaker synchronized to patient’s sinus rhythm and programmed to stimulate the right ventricle with a conventional lead and the left ventricle through a specially designed coronary sinus lead.
Biventricular pacing and ICD capabilities in most cases.
Improves NYHA class, exercise tolerance, LVEF, and quality of life

Ultrafiltration
Removal of fluid via ultrafiltration mode of CRRT
Administered over 8 hours
Maximum fluid removal 500 ml/hr
Well tolerated

5. Nursing interventions
Patient assessment Q 1-2 hours:
VS, LOC
Head-to-toe assessments
Neuro: decreased mentation can indicate poor perfusion to brain
Cardiac: Heart sounds: S3, gallop, murmur, distant
Peripheral pulses, edema
Skin temperature, color, moisture
Nailbeds: color, capillary refill
Hemodynamic parameters: CO, PAP, PAOP, SVR
Baseline, after initiation of therapy to determine effectiveness
Pulmonary: Crackles, wheezes, tachypnea, frothy sputum
GI: N/V, appetite, bowel sounds
GU: urine output: oliguria, anuria. Appearance: concentrated, dilute
Daily weights, I&O
Monitor electrolytes
Assess effectiveness of interventions
Patient/family education
 Medication
 Tests
 Therapies
 ICU routine
Discharge teaching
 Activity level
 Diet, including sodium and fluid restriction
 Discharge medications
 Weight monitoring

Certification Questions

1. A patient is admitted with complaints of chest pain accompanied by nausea and vomiting. The skin is cool and clammy. The following are noted:
 VS: BP 140/90; HR 120; RR 26 CO 3.5 L/min
 CVP 10 mmHg CI 2.1 L/min/M³
 PAOP 20 mmHg Presence of S3
 12 lead ECG shows acute changes in V2, V3, and V4
For this patient, the goals of therapy would be to:
 A. Decrease preload and afterload
 B. Increase preload and afterload
 C. Increase contractility and preload
 D. Decrease contractility and afterload

2. A patient with acute decompensated heart failure is receiving a continuous infusion of nesiritide (Natrecor) at 0.1 mcg/kg/min. Currently, the patient has the following vital signs: HR 116 bpm, sinus tachycardia with premature atrial contractions, BP 78/48 mmHg, RR 28/min, and SpO₂ 90% on 40% BiPAP mask. Immediate interventions by the nurse would include which of the following?
 A. Discontinue the nesiritide (Natrecor) infusion
 B. Place the patient in a supine position
 C. Administer a 250 ml normal saline fluid bolus
 D. Continue the nesiritide (Natrecor) infusion and administer 40 mg furosemide (Lasix) intravenously

3. After implantation of a biventricular pacemaker for end-stage heart failure, ECG signs that the pacemaker is not functioning properly would include:
A. A-V interval less than 0.20 sec
B. Widening of the QRS
C. T-wave inversion
D. More than one P wave for each QRS

4. A Patient admitted with shortness of breath demonstrates the following findings: temperature 36.8oC, HR 120/min sinus tachycardia, BP 130/76 mmHg, RR 36/min with SpO2 91%. Breath sounds reveal inspiratory crackles and rhonchi in all lung fields, The chest X-ray report states that there are Kerley B lines, enlargement of the peribronchial hilar spaces, and enlarged cardiac silhouette. These findings are consistent with which of the following?
A. Pericardial tamponade
B. Pulmonary edema
C. Pneumonia
D. Acute inferior wall MI with right ventricular failure

5. When performing patient teaching with a heart failure patient, the nurse should instruct the patient to immediately contact the HCP for which of the following?
A. Weight gain greater than 2 kg in 24 hours
B. Development of cough
C. Leg edema
D. Increased fatigue and exercise intolerance for 24 hours

II. Cardiomyopathy
A. A Comparison of Three Types of Cardiomyopathy

<table>
<thead>
<tr>
<th>Normal</th>
<th>Dilated</th>
<th>Hypertrophic</th>
<th>Restrictive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathophysiology</td>
<td>Most common; all four chambers dilated; ♦ cardiac contractility; ⊤ risk of thrombus formation</td>
<td>Hypertrophy of ventricular septum and free wall Obstruction of outflow tract through aortic valve</td>
<td>Abnormal diastolic filling D/T rigid ventricular walls; contractility mostly unimpaired</td>
</tr>
<tr>
<td>Clinical Manifestations</td>
<td>S/S right and left heart failure, chest pain,</td>
<td>Dyspnea, palpitations, fatigue, mitral and aortic murmur, syncope,</td>
<td>Chest pain, dyspnea, fatigue, S/S RHF, JVD, peripheral edema,</td>
</tr>
</tbody>
</table>
Normal | Dilated | Hypertrophic | Restrictive
--- | --- | --- | ---
palpitations, fatigue, syncope | murmur of mitral regurgitation, aortic stenosis | hepatomegaly

Hemodynamic Findings

<table>
<thead>
<tr>
<th>Normal</th>
<th>Dilated</th>
<th>Hypertrophic</th>
<th>Restrictive</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO normal</td>
<td>CO normal</td>
<td>CO normal</td>
<td>CO normal</td>
</tr>
<tr>
<td>CVP, PAP, PAOP, SVR</td>
<td>CVP, PAP, PAOP, SVR</td>
<td>CVP, PAP, PAOP, SVR</td>
<td>CVP, PAP, PAOP, SVR</td>
</tr>
</tbody>
</table>

Pharmacology

<table>
<thead>
<tr>
<th>Normal</th>
<th>Dilated</th>
<th>Hypertrophic</th>
<th>Restrictive</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF medications, anticoagulants</td>
<td>HF medications, antidysrythmics, anticoagulants. No inotropes</td>
<td>HF medications, antidysrythmics.</td>
<td></td>
</tr>
<tr>
<td>Caution with nitrates, diuretics, preload lowering drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collaborative care

- All: activity restriction, sodium and fluid restriction, oxygen, VS, ECG and hemodynamic monitoring, I&O, daily weights, systems assessments, space activities, promote rest. ICD, IABP, heart transplant.
- Teaching: Diet, medications, activity, support groups, coping strategies, CPR for family.

III. Valvular Heart Disease

A. Description

- caused either by stenotic or incompetent valves; usually affects the mitral or aortic valve
 - **Stenotic**
 - Valve opening progressively decreases in size; forward flow of blood is restricted. Affected chamber becomes hypertrophied
 - **Incompetent**
 - Also known as insufficiency or regurgitation
 - Valve does not completely close; blood backflows into chamber, resulting in volume overload and dilated chamber
 - Causes specific murmur, either systolic or diastolic

B. Etiology

- Rheumatic heart disease most common cause
- Infection, MI, systemic disease
- Aortic and mitral valves most commonly affected

C. Location and timing of murmurs with clinical manifestations
Valvular dysfunction

<table>
<thead>
<tr>
<th>Location and timing of murmur</th>
<th>Clinical Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic insufficiency</td>
<td>Dyspnea, chest pain, palpitations, S/S LHF and RHF, widened pulse pressure, ▼ CO ▲ CVP, PAP, PAOP</td>
</tr>
<tr>
<td>Aortic stenosis</td>
<td>Dyspnea, chest pain, palpitations, fatigue, S/S LHF and RHF, syncope, narrowed pulse pressure, AF, AV block, LBBB, ▲ CO ▼ CVP, PAP, PAOP, SVR</td>
</tr>
<tr>
<td>Mitral insufficiency</td>
<td>Dyspnea, fatigue, pulmonary HTN, pulmonary edema, S/S RHF, AF, ▼ CO ▲ CVP, PAP, PAOP</td>
</tr>
<tr>
<td>Mitral stenosis</td>
<td>Dyspnea, S/S RHF, fatigue, palpitations, pulmonary HTN, pulmonary and systemic edema, AF, ▼ CO ▲ CVP, PAP, ▼ PAOP w/ large a waves</td>
</tr>
</tbody>
</table>

D. Medical and surgical management

Medical
- Activity restriction, sodium and fluid restriction, oxygen
- Management of heart failure; inotropes, diuretics, ACE inhibitors
- Monitor for complications: dysrhythmias, emboli

Surgical
- Valvuloplasty - repair of valve
- Commissurotomy - surgical separation of valve leaflets
- Valve replacement
 - Homograft - valve from human cadaver; lasts 5-8 years
 - Heterograft - valve from animal, lasts 5-8 years
 - Artificial graft - lasts 10-15 years; requires long term anticoagulation

Nursing care post-op similar to CABG

IV. Inflammatory disease

A. Endocarditis

Description
- Infection of microorganisms circulating in the bloodstream
Bacteria carried through system and deposited onto endocardial surfaces, especially valve leaflets

B. Infectious process
 Bacteria grow on leaflets – Vegetation
 Lesions or vegetations form on valves
 Valves have irregular or “cauliflower” appearance
 Leaflets damaged and dysfunctional
 Life-threatening
 May require valve surgery
 Can grow to involve the:
 Cordae tendinae
 Papillary muscles
 Conduction system

C. Causative organisms
 Streptococcus (most common)
 Staphylococcus
 Gram negative bacilli (E. coli, Klebsiella)
 Fungi (Candida, Histoplasma)

D. Affected valves
 Mitral most commonly affected
 Aortic second most affected

E. Populations at risk
 Rarely occurs in people with normal hearts
 IV drug abuse
 Risk increased with preexisting cardiac conditions
 Prosthetic valves
 History of previous endocarditis
 Damaged or abnormal heart valves due to:
 Rheumatic fever
 Congenital heart disease
 Congenital valve defects

F. Presenting symptoms
 Dependent on:
 Valve involved
 Organism
 Duration of time
 Extent of vegetative growth
 Fever
 Fatigue
 Chills
 Headache
 Night sweats
 Musculoskeletal complaints
Cough New murmur
Weight loss Heart failure
General malaise Positive blood cultures
Weakness Anemia

G. Treatment
Blood cultures to identify organism
Administration of antibiotics or antifungals
Oxygen if indicated
HF treatment if present
May require valve replacement surgery

V. Dysrhythmias
A. Defined
Any cardiac rhythm other than sinus rhythm at a normal rate
Due to MI, ischemia, hypoxemia, electrolyte imbalance, acid-base imbalance
B. Clinical Manifestations
Anxiety, weakness, dizziness, syncope, chest pain, dyspnea, change in level of consciousness, palpitations, S3 heart sound, crackles.
Signs and symptoms of decreased cardiac output:
 Tachycardia, hypotension, tachypnea, cool, clammy skin, oliguria/anuria, restlessness, confusion.
C. Collaborative Management
Monitor cardiac rhythm for dysrhythmias
Obtain 12-lead ECG with onset of dysrhythmia
Administer oxygen if indicated
Maintain patent IV access
Treat etiology, follow ACLS algorithms - http://www.acls.net
Antidysrhythmic therapy
 Asystole, PEA: Transcutaneous pacemaker (TCP), epinephrine, atropine
 Pulseless VT, VF: Shock, epinephrine, vasopressin in place of one dose of epi
 Sinus tach, SVT, AF, atrial flutter: adenosine, amiodarone
 Sinus brady, Wenckebach, 3rd degree AVB: atropine, TCP
 VT with pulse: amiodarone
Defibrillation or cardioversion
Provide emotional support to patient and family
Patient/family education
D. Pacemaker therapy for dysrhythmias
1. Indications: 2nd degree AVB, type II, 3rd degree AVB, atrial fibrillation with
slow ventricular response; symptomatic bradycardias

2. Types of temporary pacemakers
 Transcutaneous (TCP)
 Pacing through chest; electrodes on skin surface
 Usually used in emergent situations
 Not as effective as other forms of temporary pacing
 Transvenous
 Pacing electrode advanced through central access into RV
 Epicardial
 Pacing electrodes sewn to epicardium during cardiac surgery

3. Most frequently used modes of temporary pacing and pacing codes
 Three categories, each represented by a letter.
 First letter refers to chamber that is paced
 Second letter represents chamber being sensed
 Third letter is chamber being triggered and/or inhibited in response to the sensing
 Five categories for permanent pacemakers
 Ventricular pacing – VVI
 Ventricle paced, sensed and inhibited
 One pacemaker spike, just before QRS; appears wide
 May not see with every beat; depends on rate. If rate if faster that set rate, pacemaker will not fire.

 ![Dual chamber pacing](image)

 pacing - DDD
 Atrium and ventricle paced, sensed and triggered or inhibited in response to sensing
 Two pacemaker spikes, one before P wave, one before QRS
 May see any combination, depending on rate, conduction
 No dual chamber with TCP
TCP

Does not use letter system; only two types of settings
Demand (Synchronous)
 Paces only when patient’s HR falls below set rate
 Appearance similar to VVI
Fixed (Asynchronous)
 Unable to obtain capture
 Pacer unable to sense intrinsic activity
 Artifact prevents sensing
 Danger of pacemaker spike falling on T wave and causing ventricular tachycardia or ventricular fibrillation

4. Pacemaker settings
 Rate control
 Regulates impulses per minute; usually set between 60-80 bpm.
 AV pacemaker, rate controls both
 Higher if being used for overdrive suppression of tachyarrhythmias.
 Ordered by physician
 Output dial
 Regulates amount of electrical current delivered to initiate depolarization and contraction
 Measured in milliamperes (mA).
 Threshold (capture)
 Point at which depolarization occurs
 Pacemaker spike followed by P wave (atrial pacing) or QRS (ventricular pacing)
 Separate output dials for atrial and ventricular pacing.
 Sensitivity control
 Regulates ability of the pacemaker to detect the heart’s intrinsic electrical activity.
 Measured in millivolts (mV)
 Pacemaker has a sense indicator, usually a light, which will indicate each time the pacemaker senses electrical activity.
 To increase sensitivity, the dial is turned down
 No sensitivity on TCP.
 AV interval control
 Used in AV pacing.
 Regulates the time interval between the atrial and ventricular pacing stimuli
 Sets PR interval; usually equal to PR of .20.
5. Initiating pacing
 Set heart rate and AV control per physician order
 Determine threshold
 Set mA 2-3 times higher than threshold to ensure capture
 TCP may increase mA by 10% after capture obtained
 Set sensitivity control so that pacemaker senses the heart’s intrinsic
electrical activity (R wave)
 Ensure that sensitivity not so low that it also senses lower
amplitude electrical signals such as the T wave
 Will consider it to be an R wave and double-count rate
 Will not pace when HR is below set rate
 No sensitivity on TCP

TCP Preparation
 Explain to patient and family
 TCP will be uncomfortable
 May require analgesia
 Thoroughly wash and dry skin
 Use skin preparation
 Pad placement
 Anterior-posterior preferred
 Anterior-anterior may need to be used

6. Nursing care
 Report settings as part of shift change report
 Check connections
 Temporary/epicardial
 Wear gloves when handling pacing wires to prevent microshock
 and VF
 When not in use, cover leads with gauze and secure to
 patient with tape
 Secure temporary pacemaker to patient’s waist with
 strap/telemetry pouch.
 Suspend from IV pole with twill tape if patient is on
 bedrest.
 Have extra batteries and pacemaker on hand.
 Perform site care, inspect site to prevent/identify infection

TCP
 Assess integrity of TCP pads
 Assess skin integrity
 Be sure TCP is plugged in

7. Pacemaker malfunction
Failure to capture
Pacemaker spikes not followed by complex

All: May be due to mA too low, low battery
Transvenous/epicardial: fibrin at tip of lead, fractured lead wire, movement away from ventricular wall
Increase mA, replace battery, notify physician

Failure to sense
Pacemaker does not sense patient’s intrinsic rhythm; paces inappropriately
Pacemaker spikes throughout strip, do not correlate with complexes

Transvenous/epicardial: Due to sensitivity set to low
Correct by increasing sensitivity
To increase, turn sensitivity down
TCP: No sensitivity setting
Change to fixed mode setting

Certification Questions
1. Which of the following medications is administered to prevent sudden death associated with dilated cardiomyopathy?
 A. Warfarin (Coumadin) to prevent clot formation
 B. Calcium channel blockers to control tachycardia
 C. Nitrates to improve coronary artery perfusion
 D. Digoxin to reduce atrial dysrhythmias and improve contractility

2. Chest pain associated with aortic stenosis can be caused by:
A. Decreased stroke volume
B. Disproportionate oxygen supply versus demand
C. Prolapsed valve leaflets
D. Decreased contractility

3. Which of the following medications may worsen symptoms of heart failure associated with hypertrophic cardiomyopathy?
 A. Calcium channel blockers
 B. Beta-blockers
 C. Nitroglycerin
 D. Amiodarone

4. Which of the following medication regimens would be most appropriate to relieve chest pain in a patient with a diagnosis of myocarditis?
 A. Nitroglycerin 1/150 grains sublingual
 B. Furosemide 40 mg IV
 C. Ibuprofen 800 mg PO
 D. Morphine sulfate 2 mg IV

5. In a coronary care unit in which medications are not permitted to be left at the bedside and the crash cart with monitor/transcutaneous pacemaker/defibrillator is outside the central nurses’ station, an intubated patient on mechanical ventilation develops third-degree AV block at a rate of 35 beats/min with signs of poor tissue perfusion. The most appropriate initial intervention for the nurse assigned to this patient would be to
 A. Initiate transcutaneous pacing
 B. Administer atropine 0.5 mg IV
 C. Initiate an infusion of epinephrine at 5 mcg/min
 D. Initiate an infusion of dopamine at 5 mcg/kg/min

6. The nurse should perform which of the following interventions for a patient with chest pain, hypotension and tachycardia at a rate of 180 bpm?
 A. Administer amiodarone 150 mg IV over 10 minutes
 B. Administer adenosine 6 mg rapid IV push
 C. Perform synchronized cardioversion
 D. Defibrillate with 300 joules

7. A patient who suffered complete heart block after an anterior wall infarction receives a temporary pacemaker. The following rhythm develops:
The nurse would respond by initiating which pacemaker action:
 A. Changing the pacing mode from paced to fixed (asynchronous).
 B. Increasing the output
 C. Decreasing the output
 D. Increasing the paced rate

